A Thing With Feathers

Feather by Heather HinamEven if you can somehow go through your entire life without ever seeing a bird, chances are very good that you will still have some experience with feathers. Whether displayed in a  hatband, stuffed into a pillow or quilt or tied together at the end of a duster, feathers are a fairly ubiquitous part of the world around us and certainly the defining characteristic of the group of flying vertebrates we know today as birds.

But, have you ever given much thought to where they came from?

As it turns out, feathers have been around a lot longer than most people realize. As paleontologists find more fossils every year to slot into the puzzle that is the evolution of life on this planet, the picture becomes clearer and stories start to make sense.

When it comes to the story of the evolution of feathers, the first thing you have to remember is that birds are modern dinosaurs, having evolved from the lineage known as Theropods, whose ranks include those Jurassic Park villains Velociraptor and Tyrannosaurus rex.  However, what didn’t make it into the movies was the fact that, at the very least, Velociraptor was not only ferocious, but fluffy. At first, this detail was inferred from the discovery that many of its ancestors were feathered and some, like the bizarre, bi-plane like creature Microraptor gui, could fly. Then, a discovery of quill nobs, a trait seen in modern birds, on the forearm bones of one specimen confirmed it. Now an accurate representation of Velociraptor is something like a sleek, predatory ostrich.

Even more recent discoveries have put the assumption of a scaly hide in Tyrannosaurus rex into doubt. While they haven’t found specimens of this iconic dinosaur with feathers yet, a cousin from about 125 million years old China, named Yutyrannus most definitely was feathered. About the size of a bus, these are the largest feathered dinosaurs known to date.

So how far back do feathers go? In time, we can trace their existence at least 160 million years to chicken-like dinosaurs called Anchiornis, but these critters already had the highly complex barbed feathers we see in modern birds today.  Most evolutionary biologists agree that feathers likely started out as single, hollow,  hair-like filaments that became branched and barbed as needed over time. These have been found in many species, most notably, Sciurumimus, a dinosaur found very near the base of the Theropod branch. Described for the first time just last year, this species shows a spectacularly preserved coat of dense, filamentous plumes. Finding feathers like these near the base of the branch suggests that maybe more advanced Theropods, including T-rex had some kind of plumage. Still, we don’t know just how far back down the tree they go.

The point of origin keeps getting pushed closer and closer to the root of at least the dinosaur’s evolutionary tree thanks to feather filaments being found in some Ornisthischian dinosaurs, like the Triceratops cousin, Psittacosaurus, who are about as far removed from Theropods and modern birds as a dinosaur can be. Actually, they’re starting to find feathers all over the dinosaur family tree, leaving us to wonder if they predate the group altogether. In fact, the genes responsible for taking an undifferentiated plate of keratin and turning it into a feather has been found in crocodilians, who although they are birds’ closest living relatives, branched off from the group well over 250 million years ago.

So what did these prehistoric feathers look like? Structurally, early feathers started out as simple, hollow strands, growing out from a plate of keratin embedded in the skin. More advanced feathers split into barbs, looking like fluffy ostrich plumes. Eventually, those barbs developed tiny barbules that allowed their wearers to ‘zip them up’, turning them into strong, but flexible sheets that eventually were co-opted into airfoils. This same evolutionary progression can be seen today in the growth of every bird embryo.

Most fascinating, however is the fact that paleontologists now know what colour some of these plumes were. Recent work with Anchiornis turned up microscopic pockets of pigment called melanozomes. By comparing these ancient structures to those known today, they managed to work out that not only was Anchiornis about the size of a chicken, it actually kind of looked like one, a bright tableau of shiny black and white spangles with a flash of red on a crest. Who knows, maybe in time, we’ll see our very own field guide to dinosaur plumage. Either way, you can’t help but marvel at these remarkable, ancient, ingenious  and unarguably beautiful innovations of evolution.

In the Bleak Midwinter

Insulation - chickadee warming its feetIt was minus 40 Celsius with the wind chill the other morning. The bite of the air stung any carelessly exposed skin and the snow squeaked like Styrofoam underfoot. Wrapped up in my shearling coat, I couldn’t help but watch in fascination as a nearby mountain ash came alive with foraging Pine Grosbeaks and the cheerful chirps of chickadees and nuthatches filled the frosty air, reminding me just how incredible these tiny winter residents really are.

Chickadees, for example, weigh not much more than 10 g, about the same as two nickles. Yet, they can survive quite comfortably in temperatures that would leave us frostbitten and shivering.

Winter birds accomplish this seemingly unfathomable feat in a number of different ways. Firstly, they’re wearing a down coat. Those of you who own one know just how warm they can be and for birds, that insulation is part of the standard package. Feathers are a remarkable insulator. Comprising only about 5 – 7 % of a bird’s body weight (that’s half a gram on a chickadee), the air trapped within them makes up 95% of that weight’s volume, creating a thick layer of dead air that traps heat generated by the body, preventing much of its loss even on the coldest of days. Many winter residents grow a thicker winter coat, much like mammals, augmenting their feather count by up to 50 %. Fluffing feathers increases their insulation factor even further (about 30%), making them a very efficient way to keep warm in the winter, so efficient, in fact, some birds, like Great Gray Owl can actually overheat in the summer.

While some species, like Ruffed Grouse and many owls, grow feathers, along their legs and feet, like fluffy winter boots,  most songbirds’ legs are bare, thin sticks of sinew, blood and bone exposed to the elements. Although birds can tuck these delicate structures up into the warm cover of down when temperatures really plummet, most of the time they’re out in the open. So, why don’t they freeze and why isn’t all of a bird’s body heat lost through these naked limbs? Bird legs are marvels of biological efficiency, having been streamlined by millennia of evolution into sleek structures with very little muscle and few nerves, using instead pulley systems of tendons and bone to accomplish movement. These tissues, along with their scaly coverings have very little moisture and are less likely to freeze than flesh and skin.

Birds also have cold feet. Using a common natural system called a countercurrent heat exchange, our feathered friends keep their feet upwards of ten to twenty degrees colder than their core body temperature. Countercurrent Heat Exchange System in a bird's leg. by Heather HinamWarm arterial blood on its way to the feet pass right next to colder blood coming back towards the body through the veins. Heat wants to reach a point of equilibrium, so warmth from the arteries passes into the veins which carries it back into the body. Because the flows are running opposite to each other, it’s impossible for the heat balance to ever reach equilibrium, so by the time the blood gets to the feet, it’s much cooler than when it entered the leg and all that precious body heat has been kept where it needs to be, in the core.

However, as most of us who have experienced a true northern winter know, a coat alone isn’t always enough. There has to be heat to trap in order for insulation to work over the long term. To generate that heat, many winter birds shiver constantly when they’re not moving. Ravens, whose feather count isn’t as high as some of its more fluffy distant cousins, actually shiver constantly, even when flying, the repeated contractions of their massive pectoral muscles acting like a furnace. Powering that furnace takes energy and cold-weather specialists meet those needs by upping their metabolic rate, in some species, to several times their normal levels. As a result, food is always a going concern in winter.

Many winter residents can only forage for food during the day, so keeping the internal fires burning at night can be a challenge.  Finding a warm place to settle in for the night reduces those metabolic needs.  Densely-packed spruce boughs or old tree cavities are perfect nighttime microclimates and many birds use them. Chickadees will often take it a step further, piling as many fluffy little birds as possible into an old woodpecker hole to share body heat, which may just be too much cuteness in one place. Ruffed Grouse take advantage of the insulative capacity of snow in a somewhat comical way. One cold nights, the birds dive head first into a drift and tunnel deeper into the snow, creating a cave known as a kieppi. Temperatures inside the kieppi can hover just around the freezing mark, even when it’s minus thirty outside.

So as we close in on the shortest day of the year and sink deeper into the cold clutches of winter, take a moment, now and then, to marvel at those tiny survivalists outside your window. Much of the technology that keeps us from succumbing to winter’s icy grip was adapted from them. Nature truly is our greatest teacher.